Global diffusion and local implementation –
the discourse particle LIKE around the world

Martin Schweinberger

Universität Hamburg
martin.schweinberger@uni-hamburg.de
Research question

- What happens when an innovation diffuses through a speech community...
 - Does it spread in a predictable way or does it spread in a rather chaotic fashion?

- Well, there are models which describe exactly that...

 for instance, the models developed in the Labovian school of variationist sociolinguistics
Relevance and research question

- Our current models have the advantages that they are
 - Based on many studies (highly stable)
 - High predictive and explanatory power

- But these models also have shortcomings, e.g.
 - Based mostly on studies of AmE and EngE
 - Focus on phonological changes
 - Neglect of language contact and multilingualism
 - (Overemphasizing generational change, the apparent time construct and face-to-face contact)
However, nowadays innovations are available globally due to increased language and dialect contact.

Sociolinguists are of course aware of that and have begun to look at globalization from a variationist perspective (e.g. Meyerhoff & Niedzielski 2003; Buchstaller 2008; Buchstaller & D’Arcy 2009).

Implications for the standard model of language change from below?

in other words...

How appropriate is the Labovian paradigm, i.e. the standard model, in cases of...

- dialect contact and multilingualism
- lexical change
- culturally diverse settings?
Theoretical background

Labov’s standard model of language change from below

Figure 1: Six-stage model of gender relations in linguistic change from below (Labov 1994: 65)
The impact of gender

- Most of the linguistic changes which have been studied in the 2nd half of the 20th century show a high degree of social stratification and gender differenciation (Labov 1994, 2002).

 - Female adolescents are expected to show a preference for linguistic means to indicate group membership
 - Male adolescents are expected to express group membership less than females and through non-linguistic means.

Case study

The discourse marker LIKE

(1) Clause-medial LIKE
 a. Should I make *like* tartar sauce or something really decadent? (Santa Barbara Corpus: sbc003$Marilyn)
 b. Cos he just won a place to *like* <,> Canterbury Cathedral Choir School. (ICE-Canada: S1A-051$A)

- Properties
 - Modifies element to its right (rightward scope)
 - Hedges or focuses lower level constructions (phrases and words, not clauses and sentences)
 - Globally available innovation (occurs in almost all regional varieties)
Data editing & processing

- *International Corpus of English* (ICE)
 - Distinct regional components
 - Santa Barbara Corpus of Colloquial American English
 - ICE Canada
 - ICE Ireland
 - ICE New Zealand
 - Matching standardized design
 - Most informal register (S1A): face-to-face conversation, telephone calls (highest frequency of non-standard and discourse features)
Data editing & processing

- **SPEAKER-BASED ICE**
 - Allows speaker-based analyses (information about a speaker’s age, gender, etc.)
 - For each speaker a PERL script created a file that contained only the utterances of that speaker
 - Extraction of the word counts for each speaker
 - Using the word counts, it was possible to calculate the per-1,000-word frequencies of clause-medial LIKE for each speaker

Making use of the speaker information provided by the ICE teams the normalized frequencies of clause-medial LIKE were correlated with extra-linguistic factors (speaker age, gender, occupation, current place of residence, education level, etc)
Data editing & processing

- **SPEAKER-BASED ICE**
 - Allows speaker-based analyses (information about a speaker’s age, gender, etc.)
 - For each speaker a PERL skript created a file that contained only the utterances of that speaker
 - Extraction of the word counts for each speaker using PERL
 - Using the word counts, it was possible to calculate the per-1,000-word frequencies of clause-medial LIKE for each speaker

Making use of the speaker information provided by the ICE teams the normalized frequencies of clause-medial LIKE were correlated with extra-linguistic factors (speaker age, gender, occupation, current place of residence, education level, etc)
Data cleaning, editing & processing

Table 3: Overview of the data used for the present analysis

<table>
<thead>
<tr>
<th>Variety</th>
<th>Words</th>
<th>Speaker</th>
<th>INI</th>
<th>MED</th>
<th>FIN</th>
<th>NON</th>
<th>NA</th>
<th>ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ICE component)</td>
<td>(SUM)</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
<td>(N)</td>
</tr>
<tr>
<td>Canada</td>
<td>194,574</td>
<td>244</td>
<td>368</td>
<td>381</td>
<td>26</td>
<td>112</td>
<td>13</td>
<td>900</td>
</tr>
<tr>
<td>Santa Barbara C.</td>
<td>246,258</td>
<td>163</td>
<td>220</td>
<td>390</td>
<td>1</td>
<td>234</td>
<td>15</td>
<td>860</td>
</tr>
<tr>
<td>Ireland</td>
<td>189,787</td>
<td>309</td>
<td>249</td>
<td>237</td>
<td>318</td>
<td>118</td>
<td>14</td>
<td>936</td>
</tr>
<tr>
<td>New Zealand</td>
<td>229,193</td>
<td>227</td>
<td>209</td>
<td>183</td>
<td>20</td>
<td>115</td>
<td>2</td>
<td>529</td>
</tr>
<tr>
<td>SUM</td>
<td>859,812</td>
<td>943</td>
<td>1,046</td>
<td>1,191</td>
<td>365</td>
<td>579</td>
<td>44</td>
<td>3,225</td>
</tr>
</tbody>
</table>

Global diffusion and local implementation – the discourse particle LIKE around the world
Results
Results

Canadian English

Legend:
- female
- male
- both genders combined

Relative Frequency (per 1,000 words) vs. AGE

- 16-20
- 21-30
- 31-40
- 41+

June 2nd 2012

Global diffusion and local implementation – the discourse particle LIKE around the world
Results

American English

Clause-medial LIKE

Relative Frequency (per 1,000 words) vs. Age

- female
- male
- both genders combined

June 2nd 2012

Global diffusion and local implementation – the discourse particle LIKE around the world
Results

Irish English

Clause-medial LIKE

Relative Frequency (per 1,000 words)

AGE

0-25
26-33
34-49
50+

female
male
both genders combined

Global diffusion and local implementation – the discourse particle LIKE around the world
Results

New Zealand English

Clause-medial LIKE

Relative Frequency (per 1,000 words)

AGE

16-19
20-29
30-39
40+

female
male
both genders combined

June 2nd 2012

Global diffusion and local implementation – the discourse particle LIKE around the world
Summary & Discussion

- Supra-locally stable patterns
 - Monotonic recess with age
 The results confirm that “the association of *like* with younger speakers seems to hold across the English-speaking world” (D’Arcy 2007: 391).

- Variety-specific patterns
 - Degree and direction of gender differences
 “These trends show that sex differences [...] are developmental, and are learned. They do not appear to be endemic to the features themselves, but are created in the speech community, within the peer group” (Tagliamonte 2005: 1912-1913).
Summary & Discussion

- Phonological change (transmission)
 - generational change (slow)
 - Distinct social stratification and gender differentiation
 - High quality of face-to-face contact required: Media are negligible with respect to transmission (Labov 2001: 228-229, 362-363, 385)

- Lexical change (diffusion)
 - (partial) communal change (rapid)
 - Less social stratification and gender differentiation
 - No high quality of face-to-face contact required
 - Transmission via mass-media (Muhr 2003)
Outlook

- Expansion of the use of speaker-based analyses using the ICE 2.0
 - include more varieties
 - upcoming ICE components of ESL varieties
 - maybe use ICLE components (EFL varieties)
 - expand the pool of innovations
 - e.g. quotative complementizer BE LIKE, innovative intensifiers
 (totally, etc.), innovative general extenders (and stuff, and shit)
- Sociolinguistics from a global perspective
- Evaluating the stability of systematic patterns underlying the diffusion of innovations
Thank you very much for LIKE your attention
References

References

References

Global diffusion and local implementation – the discourse particle LIKE around the world

Martin Schweinberger

Universität Hamburg
martin.schweinberger@uni-hamburg.de
Figure 2: Real and apparent time in language change (Downes 1998: 238)
Types of change (Labov 1994: 84)

- **Age-grading**
 Individuals change their linguistic behaviour throughout their lifetimes, but the community as a whole does not change.

- **Generational change**
 “Individual speakers enter the community with a characteristic frequency for a particular variable, maintained throughout their lives; but regular increases in the values adopted by individuals, often incremented by generations, lead to linguistic change for the community.”

- **Communal change**
 “In communal change all members of the community alter their frequencies together or acquire new forms simultaneously.”
Multivariate statistics

- Multivariate regression model (Poisson Regression)
 - Based on a probability distribution which describes the occurrence of discrete events in a given interval (cf. Baayen 2008:296)
 - Used for modeling rare events, i.e. count data
 - For example, volcano outbreaks per 100 years, instances of cancer in a village within one year, or LIKE per 1000 words, .
 - glm package in R
 family=quasipoisson to compensate for moderate overdispersion, i.e. \(\lambda > 1 \) (\(\lambda \)=probability of event*intervall size (number of draws) or variance of errors/mean>1); link=log
 - Relatively strict model requirements!
Multivariate statistics

- Multivariate regression model (Poisson Regression)
 - Based on a probability distribution which describes the occurrence of discrete events in a given interval (cf. Baayen 2008:296)
 - Used for modeling rare events, i.e. count data
 - For example, volcano outbreaks per 100 years, instances of cancer in a village within one year, or LIKE per 1000 words, ...
 - glm package in R
 family=quasipoisson to compensate for moderate overdispersion, i.e. $\lambda>1$ ($\lambda=$probability of event*intervall size (number of draws) or variance of errors/mean>1); link=log
 - Relatively strict model requirements!
Multivariate statistics

- Multivariate regression model (Poisson Regression)
- Dependent Variable
 - Clause-medial LIKE per 1,000 words (counts)
- Independent Variables
 - Age (nominal: age group 1, 2, 3, or 4; 1 = dummy)
 - Sex/Gender (nominal: m/f)
 - PAI (priming, accommodation, Idiosyncratic overuse; numeric) (to save-guard against over-estimating extra-linguistic variables; ratio: instances of all instances of LIKE in a given conversation divided by the token count of that conversation)
Additional real-time analyses

- Non-parametric t-tests (t-score and significance level)
- Dependent Variable
 - Use of clause-medial LIKE per 1,000 words (frequencies) by a certain age group
- Independent Variables
 - Date of data compilation
 - X (1990-1994)
 - Y (2001-2005)
Results

Canadian English

Table 2: Results of the multivariate regression for clause-medial LIKE in CanE.

| MED | Estimate (coefficient) | Std. Error | z value | Pr(>|z|) |
|---------------|------------------------|------------|---------|---------|
| (Intercept) | 0.52 | 0.256 | 2.04 | <.05* |
| SEX: Male | -0.00 | 0.192 | -0.01 | .98 |
| A2 | -0.36 | 0.268 | -1.36 | .17 |
| A3 | -0.32 | 0.195 | -1.67 | <1 |
| A4 | -1.50 | 0.275 | -5.44 | <.001***|
| PAI | 0.04 | 0.006 | 7.28 | <.001***|
| SEX: Male*A3 | -0.74 | 0.377 | -1.93 | <.05* |

Table 3: LIKE use in CanE with respect to AGE and the date of data compilation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>n.s.</td>
<td>N.A.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>INI</td>
<td>n.s.</td>
<td>N.A.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>MED</td>
<td>n.s.</td>
<td>N.A.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>FIN</td>
<td>n.s.</td>
<td>N.A.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>NON</td>
<td>-1.607.</td>
<td>N.A.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>
American English

Results

Table 4: Results of the multivariate regression for clause-medial LIKE in AmE.

| MED | Estimate (coefficient) | Std. Error | z value | Pr(>|z|) |
|-----------|------------------------|------------|---------|----------|
| Intercept | 0.32 | 0.342 | 0.95 | .33 |
| A2 | 0.15 | 0.379 | 0.40 | .68 |
| A3 | -0.03 | 0.437 | -0.08 | .93 |
| A4 | -1.45 | 0.416 | -3.48 | <.001*** |
| PAI | 0.01 | 0.005 | 2.90 | <.01** |
Irish English

Table 5: Results of the multivariate regression for clause-medial LIKE in IrE.

| MED | Estimate (coefficient) | Std. Error | z value | Pr(>|z|) |
|-----------|------------------------|------------|---------|-----------|
| (Intercept) | -0.35 | 0.230 | 2.30 | <0.05* |
| A2 | 0.06 | 0.289 | 0.230 | .81 |
| A3 | -0.58 | 0.488 | -1.19 | .23 |
| A4 | -1.19 | 0.441 | -2.71 | <.01** |
| PAI | 0.04 | 0.009 | 5.25 | <.001*** |
| REG:South | -0.50 | 0.270 | -1.88 | <.1 |
| A4*SEX: Male | -15.09 | 0.636 | -23.71 | <.001*** |

Table 6: LIKE in IrE use with respect to AGE and the date of data compilation.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>-1.36**</td>
<td>-3.13**</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>INI</td>
<td>-1.60*</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>MED</td>
<td>-1.48*</td>
<td>-3.00**</td>
<td>-1.50*</td>
<td>n.s.</td>
</tr>
<tr>
<td>FIN</td>
<td>1.39*</td>
<td>-3.22**</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>NON</td>
<td>-2.29*</td>
<td>n.s.</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
</tbody>
</table>
Results

New Zealand English

Table 7: Results of the multivariate regression for clause-medial LIKE in NZE.

| MED | Estimate (coefficient) | Std. Error | z value | Pr(>|z|) |
|--------------|------------------------|------------|---------|----------|
| (Intercept) | -1.13 | 0.433 | -2.61 | <.01** |
| SEX: Male | 0.85 | 0.327 | 2.90 | <.01** |
| A2 | -0.08 | 0.402 | 2.16 | <.05* |
| A3 | -0.28 | 0.487 | -0.59 | .55 |
| A4 | -0.96 | 0.564 | -1.70 | <.1 |
| PAI | 0.16 | 0.023 | 7.02 | <.001*** |
| ADC | -0.73 | 0.277 | -2.65 | <.01** |
| SML | -0.26 | 0.247 | -1.06 | .28 |
| SEX:Male:A2 | -1.24 | 0.418 | -2.97 | <.01** |