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Regression models are used to evaluate if one, or more predictors (or
independent variables) correlate significantly with a dependent or outcome
variable. The underlying logic is almost exactly identical to ANOVA (Analy-
sis of Variance) designs, but in linguistics regression models have traditionally
been used in analyses based on corpus data (e.g. sociolinguistic studies) while
ANOVAs were the method of choice in psycholinguistics. The field-specific
bias is, however, historical and cultural rather than caused by design specific
advantages.

One difference between ANOVA and regression analysis is that regression
analyses use a t-statistic rather than an F-statistic as ANOVAs do (but F is
simply t squared ;-)). Both measure the ratio of explained to unexplained
variance though.

The idea behind regression analyses can be best understood visually:
imagine a line going through the data points in a coordinate system. What
regression analyses do is to aim at finding that line going through the data
points which has the smallest sum of residuals. Residuals are the difference
between any observed data point and the predicted value for that data point.
And the sum of residuals is the error in/of the regression model. The line
of best fit line is then called the regression line (also called abline or the
regression model). The slope of the line is called the coefficient and the
point where the line crosses the y-axis is called the intercept.

The output in regression analyses provide a standard error (SE) which
shows how much the coefficients (or estimates) differ across samples. A low
standard error means that the coefficient will not differ much if we look at
many samples while a high SE indicates that the coefficient will differ a lot
between samples.

The example we are going to look at concerns the frequency of preposi-
tions in the history of the English language. Using the Penn Corpora of His-
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torical English (aka the Penn Parsed Corpus; see http://www.ling.upenn.edu/hist-
corpora/) which consist of 605 texts written between 1125 and 1900, I ex-
tracted all words with the part-of-speech tag ”/P” (preposition), calculated
the per-1,000-words frequency of prepositions per text. After some data pro-
cessing, we are left with a table of two columns: one with the text.id and
the other with the normalized relative frequency of prepositions in the text.
The question I want to investigate is whether the frequency of prepositions
has increased over time.

The r code below is used to a) extract and process the data; b) visualize
the data; c) perform the regression analysis, and d) test if the assumptions,
that a linear regression is based on, are met.

1 ### --- Prepare data

2 # Remove all lists from the current workspace

3 rm(list=ls(all=T))

4 # Install packages we need or which may be useful

5 # (to activate just delete the #)

6 #install.packages (" QuantPsyc ")

7 #install.packages ("car")

8 # Initiate the packages

9 library(QuantPsyc)

10 library(car)

11 library(ggplot2)

12 source("C:\\R/multiplot_ggplot2.R")

13 # this call will only work , if you have stored this function

in

14 # the directory specified in the call

15 source("C:\\R/slr.summary.tb") # load modified summary

function for slr

16

17 ##

#############################################################

18 ### Load and manipulate data

19 ##

#############################################################

20 # WARNING: To use this script you need to set our own paths!

21 # Your path should be the path to the corpus on your own

computer!

22 # Remember to use double backslash instead of single

backslash , if

23 # you use Windows on your machine.

24 # Read in data

25 slr.data <- read.delim("C:\\ MyProjects \\

SimpleLinearRegression/slr.data.txt", header = TRUE)

26 attach(slr.data) # we attach the data so we don ’t need to

2



Martin Schweinberger R for Linguists

specify the path all the time

27 # remove columns we do not need

28 slr.data <- as.data.frame(cbind(slr.data$datems , slr.data$P.

ptw))

29 colnames(slr.data) <- c("year", "prep.ptw") # add column

names

30 slr.data <- slr.data[!is.na(slr.data$year) == T, ] # delete

incomplete cases

31 head(slr.data) # inspect data

32 # year prep.ptw

33 #1 1736 166.01

34 #2 1711 139.86

35 #3 1808 130.78

36 #4 1878 151.29

37 #5 1743 145.72

38 #6 1807 152.59

39 str(slr.data) # inspect data structure

40 #’data.frame ’: 603 obs. of 2 variables:

41 # $ year : num 1736 1711 1808 1878 1743 ...

42 # $ prep.ptw: num 166 140 131 151 146 ...

43 summary(slr.data) #inspect data values

44 # year prep.ptw

45 # Min. :1125 Min. : 63.97

46 # 1st Qu .:1545 1st Qu .:115.66

47 # Median :1615 Median :130.78

48 # Mean :1619 Mean :129.81

49 # 3rd Qu .:1687 3rd Qu .:144.08

50 # Max. :1913 Max. :195.86

51 ## #####################################

52 ### Visualize and eyeball data

53 # set up this plot from scratch

54 p2 <- ggplot(slr.data , aes(year , prep.ptw)) +

55 geom_point () +

56 labs(x = "Year") +

57 labs(y = "Prepositions per 1,000 words") +

58 geom_smooth ()

59

60 # set up this plot from scratch

61 p3 <- ggplot(slr.data , aes(year , prep.ptw)) +

62 geom_point () +

63 labs(x = "Year") +

64 labs(y = "Prepositions per 1,000 words") +

65 geom_smooth(method = "lm") # with linear model smoothing!

66

67 multiplot(p2 , p3 , cols = 2)
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1 # set up Simple Linear egression model and inspect properties

of the model

2 prep.lm <- lm(prep.ptw ~ year , data = slr.data)

3 summary(prep.lm)

4 #Call:

5 #lm(formula = prep.ptw ~ year , data = slr.data)

6 #Residuals:

7 # Min 1Q Median 3Q Max

8 # -66.842 -13.523 1.183 14.086 65.117

9 #Coefficients:

10 # Estimate Std. Error t value Pr(>|t|)

11 #(Intercept) 1.021e+02 1.086e+01 9.397 <2e-16 ***

12 #year 1.713e-02 6.691e-03 2.560 0.0107 *

13 #---

14 #Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’

1

15 #Residual standard error: 21.11 on 601 degrees of freedom

16 # (2 observations deleted due to missingness)

17 #Multiple R-squared: 0.01079 , Adjusted R-squared: 0.00914

18 #F-statistic: 6.553 on 1 and 601 DF, p-value: 0.01071

19 # use plots to check if there are problems with the model

20 # set graphic ’s parameters to display 3 plots in one row

21 par(mfrow = c(1, 3))

22 plot(resid(prep.lm))

23 plot(rstandard(prep.lm))

24 plot(rstudent(prep.lm))

25 par(mfrow = c(1, 1)) # restore original graphic ’s parameters
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The left plot shows the residuals of the model (the difference between
the observed and the predicted value). A shortcoming of this plot is that
the residuals are not standardized, i.e. we cannot compare them to residuals
from another regression model. To overcome this shortcoming, we have a
look at standardized residuals which are residuals divided by their standard
deviation (see the plot in the middle). This way, residuals are converted into
standardized residuals, but more importantly, they now represent z-scores
and we can use the z-distribution to determine which points are problematic.
Here are three rules of thumb for diagnosing regression models based on
residuals (see Field, Miles & Field (2012:268-269):
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1. Points with extreme values, i.e. values above 3 (3.29 to be exact),
should be excluded.

2. If more than 1% of data points in our sample has values above 2.5 (2.58
to be exact), then the error in our model is too high.

3. If more than 5% of data points in our sample has values above 2 (1.96
to be exact), then the error in our model is too high.

The plot on then right shows the studentized residuals, i.e. the adjusted
predicted value of each point is divided by the standard error of the residuals.
This way, we can use the Student’s t-distribution to diagnose our model.
Adjusted predicted values are also residuals, but a specific kind of residual: a
model is calculated without one data point, then, this model is used to predict
the data point. The difference between the observed data point and the point
predicted by the model without this point is called the adjusted predicted
value. In summary, studentized residuals are very helpful to detect influential
data points. The plots show that there are two potentially problematic cases
– the dots which are at the very top and at the very bottom. These two data
points stand apart from the other points and are thus probably outliers. We
will check later if they need to be removed.

1 # Create a 2x2 matrix of diagnostic plots

2 par(mfrow = c(2, 2))

3 plot(prep.lm)

4 par(mfrow = c(1, 1))
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The diagnostic plots look very good - but what does this mean? (I will
go more into detail in the post on Multiple Linear Regression)

Well, the upper left plot is useful for a) finding outliers, or b) finding
correlations between residuals and fitted values: if there were a noticeable
trend visible in the line or the data points (e.g. an upward, downward, or
zig-zag trend in the line), we would have a problem and would have to delete
data points.

The upper right plot is useful for checking if the residuals are normally
distributed (a necessary condition for linear regressions). If the dots lie on the
line than the residuals are indeed distributed following a normal distribution.
If the dots diverge from the line at the top and bottom, then this indicates
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poor model fit.
Let’s consider the lower left plot: regression models are also based on the

assumption of homoscedasticity, i.e. that the variance of the residuals do not
change with x or - to put it differently - that the variance of the residuals
do not correlate with the predictor or predictors in multiple regression). The
assumption of homoscedasticity is met, then we should see a flat line without
upward or downward trend. If there is a trend, you have a problem called
heteroscedasticity.

The lower right plot is useful for detecting leverage, i.e. points that
over-proportionally influence the regression model (this should not be the
case as in simple linear regression all data points have the same weight).
If there are points that have a high leverage, you should try a) to use a
robust linear regression (which assigns different weights to the data points
or b) delete the data points as outliers. This plot also shows Cook’s distance
which is a measure that captures how much the regression would change if
the point I question was deleted. So Cook’s distance assesses the influence
of individual points on the model as a whole. Points which have a value
for Cook’s distance that is greater than 1 are problematic (Field, Miles &
Field 2012:269). Leverage is also a measure that provides an estimate of how
much a data point influences the accuracy of the model. Leverage values lie
between 0 (no influence) to 1 (major influence: no good!). To check if a given
point is still acceptable, you need to calculate a cut-off point (either 3(k +
1)/n) or 2(k + 1)/n)).

We will now check, if we need to exclude data points and also calculate
the standardized β.

1 # Extract standardized betas

2 lm.beta(prep.lm)

3 # year

4 #0.1038566

5 ## ################################################

6 ### Write a function for a neat output table

7 lm.summary <- function(x) {

8 p.nice <- function(z) {

9 as.vector(unlist(sapply(z, function(w) {

10 ifelse(w < .001, return("p < .001***"),

11 ifelse(w < .01, return("p < .01**"),

12 ifelse(w < .05, return("p < .05*"), return(w)))) } ))) }

13 intercept <- c(

14 round(summary(x)[[4]][1] , 2),

15 "",

16 round(summary(x)[[4]][3] , 2),

17 round(summary(x)[[4]][5] , 2),

18 round(summary(x)[[4]][7] , 4),
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19 p.nice(summary(x)[[4]][7]))

20 predictor <- c(

21 round(summary(x)[[4]][2] , 2),

22 round(lm.beta(x)[[1]] , 4),

23 round(summary(x)[[4]][4] , 2),

24 round(summary(x)[[4]][6] , 2),

25 round(summary(x)[[4]][8] , 4),

26 p.nice(summary(x)[[4]][8]))

27 mdl.statz <- c("", "", "", "", "", "Value")

28 nbcases <- c("", "", "", "", "", length(summary(x)[[3]]))

29 rse <- c("", "", "", "", "",

30 round(summary(x)[[6]] , 2))

31 multR2 <- c("", "", "", "", "", round(summary(x)[[8]], 4))

32 adjR2 <- c("", "", "", "", "", round(summary(x)[[9]] , 4))

33 F <- c("", "", "", "", "",

34 round(summary(x)[[10]][1] , 2))

35 p <- c("", "", "", "", "", round(summary(x)[[4]][8] , 4))

36 slrm.tb <- rbind(intercept , predictor , mdl.statz , nbcases ,

rse , multR2 , adjR2 , F, p )

37 colnames(slrm.tb) <- c(colnames(summary(x)[[4]]) [1],

38 "Std. Beta",

39 colnames(summary(x)[[4]])[c(2:4)],

40 "P-value sig.")

41 rownames(slrm.tb) <- c(

42 rownames(summary(x)[[4]]) [1],

43 rownames(summary(x)[[4]]) [2],

44 "Model statistics", "Number of cases in model",

45 paste("Residual standard error", paste("on", summary(x)

[[7]][2] ,"DF")),

46 "Multiple R-squared", "Adjusted R-squared",

47 paste("F-statistic",

48 paste("(", round(summary(x)[[10]][2] , 0), ", ",

49 round(summary(x)[[10]][3] , 0), ")", sep = "", collapse = ""))

,

50 "Model p-value")

51 slrm.tb <- as.data.frame(slrm.tb)

52 return(slrm.tb)

53 }

54 lm.summary(prep.lm) # inspect the results

55 # Estimate Std. Beta Std. Error t value Pr(>|t|) P-value sig.

56 #(Intercept) 102.09 10.86 9.4 0 p < .001***

57 #year 0.02 0.1039 0.01 2.56 0.0107 p < .05*

58 #Model statistics Value

59 #Number of cases in model 603

60 #Residual standard error on 601 DF 21.11

61 #Multiple R-squared 0.0108

62 #Adjusted R-squared 0.0091

63 #F-statistic (1, 601) 6.55

64 #Model p-value 0.0107
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Typically, the results of regression models are reported using a table like
the one we just created (see again below).

However, you can also summarize the results of regression analyses in
prose form which would be something like this:

A simple linear regression model was fitted to the data. Visual inspection
of diagnostic plots and data driven methods did not suggest problems con-
cerning outliers and model fit. The final linear regression model was based
on 603 data points and correlated significantly with the data (R¡sup¿2¡/sup¿:
0.0108, F-statistic (1, 601): 6.553, p-value: 0.0107*) and confirmed a signif-
icant positive correlation between the year the text was written in and the
relative frequency of prepositions in the text (coefficient: .02, std. β: 0.1039,
SE: 6.691e-03, t-value: 2.560, p-value: .0107 *).
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