
Plotting with R

Martin Schweinberger

December 29, 2017

This tutorial exemplifies how to use R to visualize, i.e. to plot data.

1 Line graphs

R is extremely versatile when it comes to plotting data but it can be trouble-
some to use R for visualizations - particularly when you are not yet as used to
R. In the following I will show you how to set up a line graph with three lines
representing different mean frequencies of three groups during three stages
of a process. I frequently use line plots and as a colleague struggled to set
one up in R I thought that including an example may be of interest for some
of you.

Creating a line graph is pretty straight forward and rather easy. However,
you have a lot of options that can and sometimes have to specify - you can find
a very nice and VERY handy overview of the graphical parameters you can
customize at http://www.statmethods.net/advgraphs/parameters.html.
We are going to set this graph up in three steps: first, we plot one vector,
then we plot the other two vectors, and , finally, we will define and plot the
axes. Have a look at the code below to see how it can be done.

1 # Remove all lists from the current workspace

2 rm(list=ls(all=T))

3 # create vectors with some data points

4 male <- c(1.6829871 , 0.7339867 , 0.2307310)

5 female <- c(0.9524596 , 0.5481039 , 0.4289967)

6 combined <- c(1.2639248 , 0.6427771 , 0.3125549)

7 # round vectors so they look nicer in the plot

8 male <- round(male , 2)

9 female <- round(female , 2)

10 combined <- round(combined , 2)

11 # setting up line graph

1

Martin Schweinberger Plotting with R

12 plot(female , # plot the vector called "female"

13 type = "o", # use plot type "o" (overplotted points and

lines)

14 lwd = 2, # use double line width (4 for 4 times the normal

line width)

15 lty = 1, # use line type 1 (striaght line)

16 pch = 19, # use point character 19 (filled circle)

17 ylim = c(0, 3), # the y-axis should be drawn from 0 to 3

18 ylab = "Relative Frequency", # the y-axis label should read

"Relative Frequency"

19 xlab = "Stages", # the x-axis label should read "Stages"

20 axes = F, # don ’t draw axes yet!

21 cex = 1) # all writing should be of normal size (.5 for

half size)

22 # add aline for the data points in vector male (pch = 0: use

empty squares as point characters)

23 lines(male , type = "o", lwd = 2, lty = 1, pch = 0, cex = 1)

24 # add aline for the data points in vector combined

25 # (lty = 3: use a dotted line instead of a straight line and

26 # pch = 4: use x marks as point characters)

27 lines(combined , type = "o", lwd = 2, lty = 3, pch = 4, cex

= 1)

28 # add x-axes with specified labels at specified intervals

29 axis(1, at = 0:4, lab = c("", "Stage 1", "Stage 2", "Stage 3"

, ""))

30 # add y-axes with specified labels at specified intervals

31 axis(2, at = seq(0, 3, .5), las = 1, lab = seq(0, 3, .5))

32 # create a legend

33 # define vector with linetypes

34 linetype <- c(1, 1, 3)

35 # define vector with point charaters

36 plotchar <- c(19, 0, 4)

37 # set up legend

38 legend("topright", inset = .05, c("female", "male", "both

genders combined"),

39 horiz = F, pch = plotchar , lty = linetype)

40 # create a box around the plot

41 box()

42 # create a grid in the plot

43 grid()

Below is what the code produces.

2

Martin Schweinberger Plotting with R

2 Scatter plots and histograms

A friend asked me to write some code which produces a bimodal and a
monomodal distribution and I thought someone might find the code useful.

My friend needed two plots without annotation: one showing a scatterplot
with a cloud of dots in the center of the coordinate system and another plot
with two clusters of dots that are close to the extremes of the x-axis. I wrote
some code showing these two graphs but have continued to dabble with the
code to also include histograms with their density function plotted as a line
onto the bars. So, here is the code and the plots it produces.

1 ### --- Prepare data

2 # Remove all lists from the current workspace

3 rm(list=ls(all=T))

4

5 # set graphic ’s parameters: four plots in one window

6 par(mfrow = c(2, 2))

7

8 # generate data: bimodal distribution

3

Martin Schweinberger Plotting with R

9 x1a <- rnorm(50, 0, 2) # create vector x1a with length 50,

mean = 0 and sd = 2

10 x1b <- rnorm(50, 10, 2) # create vector x1b with length 50,

mean = 10 and sd = 2

11 y1 <- rnorm (100, 20, 20) # create vector y1 with length 100,

mean = 20 and sd = 20

12 # combine vectors into a table & convert table into a data

frame

13 tb1 <- as.data.frame(cbind(c(x1a , x1b), y1))

14 colnames(tb1) <- c("x.coordinate", "y.coordinate") # add

column names

15 tb1 <- tb1[tb1[, 1] >= 0 & tb1[, 1] <=10,] # remove rows

where x is smaller or equal to 0 greater or eqal to 10

16

17 # generate scatterplot

18 plot(tb1 , # plot data in tb1

19 xlim = c(0, 10), # x axis range (from 0 to 10)

20 axes = F, # do not plot the axis

21 xlab = "", # do not add an x-axis label

22 ylab = "", # do not add an y-axis label

23 pch = 19) # add filled dots (instead of empty dots)

24 box() # plot a box around the distribution

25

26 # histogram of the first column of tb1

27 hist(tb1[, 1],

28 xlim = c(0, 10),

29 axes = F,

30 xlab = "",

31 ylab = "",

32 breaks = 10,

33 main = "",

34 col = "lightgrey",

35 freq = F)

36 box()

37 tb1.d <- density(tb1[, 1])

38 lines(tb1.d, col = "red", lty = 3)

39

40 # generate data: monomodal distribution

41 x2 <- rnorm (50, 10, 2)

42 y2 <- rnorm (50, 10, 2)

43 # combine vectors into a table & convert table into a data

frame

44 tb2 <- as.data.frame(cbind(x2 , y2))

45 colnames(tb2) <- c("x.coordinate", "y.coordinate") # add

column names

46

47 # generate scatterplot of tb2

48 plot(tb2 , xlim = c(5, 15), ylim = c(5, 15), axes = F, xlab =

"", ylab = "", pch = 19)

4

Martin Schweinberger Plotting with R

49 box()

50

51 # generate histogram of tb2

52 hist(tb2$x.coordinate , axes = F, xlab = "", ylab = "", main =

"", col = "lightgreen", freq = F)

53 box()

54 tb2.d <- density(tb2$x.coordinate)

55 lines(tb2.d, col = "black", lty = 1, lwd = 1)

56

57 # restore original graphic ’s parameters

58 par(mfrow = c(1, 1))

3 Boxplots

Probably my favorite way to display data are boxplots. Boxplots are used if
you want to display one numeric vector or when you have a categorical and a
numeric variable, e.g. you are looking at reaction times cross different groups

5

Martin Schweinberger Plotting with R

are frequencies across the sex and age. The advantage over other displays
lies in the fact that boxplots show aspects of the underlying distribution and
also allows statistical inferences directly from the display. Quick R offers a
very nice introduction to boxplots and I highly recommend you have a look
at the link.

The example I chose is very complex but you can easily adapt it to your
needs and delete code which produces things you don’t want or need. In fact,
like always with R, there are a lot of options that can specify - simply modify
the code to match your needs. But let’s start and set up the boxplots: In a
first step, we are going to generate some data and set up a data frame called
df :

1 # Remove all lists from the current workspace

2 rm(list=ls(all=T))

3 # set up fictitious data

4 ES <- rnorm (100, 50, 10)

5 HS <- rnorm (100, 50, 15)

6 SS <- rnorm (100, 35, 5)

7 duration <- c(ES, HS, SS)

8 speakers <- c(rep("ES", 100), rep("HS", 100), rep("SS", 100))

9 df <- data.frame(speakers , duration)

10 df[, 2] <- as.numeric(df[, 2])

11 # inspect data

12 head(df)

13

14 # and this is what the first rows of the data frame look like

:

15

16 #> speakers duration

17 # >1 ES 58.58587

18 # >2 ES 45.10878

19 # >3 ES 70.49455

20 # >4 ES 51.82427

21 # >5 ES 51.55624

22 # >6 ES 57.09725

In a next step, we are going to create the simplest boxplot possible (it
doesn’t look very fancy yet, but we are going to customize it later on. . .)
The function we use to set up a boxplot is simply called “boxplot” and it
takes the variables to be plotted and the data set as mandatory arguments.

1 # set up a first simple box plot

2 boxplot(duration ~ speakers , data = df)

6

Martin Schweinberger Plotting with R

Here is our first (very hmm let’s say basic) boxplot:

After having created a first very simple boxplot, we are going to customize
it and make it look much nicer. To do so, we are going to make use of
the in-build arguments that can be used to specify features of our boxplot.
Something that is not really necessary but which allows you to specify and
customize axes is to not draw them at first, but draw them separately from
the plot - and this is exactly, what we are going to do now:

1 # set up a nicer box plot

2 boxplot(duration ~ speakers ,

3 data = df , # the data we want to display

4 main = "", # you could specify a title here

5 ylab = "Duration (ms)", # label of the y-axis

6 ylim = c(0, 100), # label of the x-axis

7 axes = F, # do not draw axes yet

8 notch = T, # include notches

9 col = c("lightgreen", "lightgrey", "lightblue")) # create

boxplots with different colors

10

11 # now , we create the x-axis

7

Martin Schweinberger Plotting with R

12 axis(1, # set up the x-axis (1 = x, 2 = y)

13 at = 1:3, # we specify the locations where we want the

tickmarks

14 labels = c("", "", ""), # you could specify the text here

15 lty = 1, # we define the linetype (1 = straight line)

16 col = "black", # the tickmarks should be black

17 las = .8) # the font size should be 80% of the normal size

18

19 # we now set up the y-axis

20 axis(2, # set up y-axis

21 at = c(0, 20, 40, 60, 80, 100), # create tick marks at the

specified locations

22 labels= c("0", "20", "40", "60", "80", "100"), #create text

at the specified locations

23 lty = 1, # we define the linetype (1 = straight line)

24 col = "black", # the tickmarks should be black

25 las = .8) # the font size should be 80% of the normal size

Here is our customized boxplot:

8

Martin Schweinberger Plotting with R

Now, we are goign to finish off our customized boxplot by including +-
symbols at the location of the means and also add text which provides the
values of the means for each group.

1 mtext(c("Group 1", "Group 2", "Group 3"), # create specified

text

2 side = 1, # put text along the x-axis

3 line = 3, # place text at the 3rd line of the x-axis

4 at = 1:3) # put text at location 1 to 3

5

6 text (1:3,

7 c(as.vector(by(df$duration , df$speakers , mean))[1],

8 as.vector(by(df$duration , df$speakers , mean))[2],

9 as.vector(by(df$duration , df$speakers , mean))[3]),

10 "+")

11

12 text (1:3,

13 c(-1.0, -1.0, -1.0, -1.0),

14 cex = 0.85,

15 labels = paste("mean\n",

16 c(round(as.vector(by(df$duration , df$speakers , mean))[1],

2),

17 round(as.vector(by(df$duration , df$speakers , mean))[2],

2),

18 round(as.vector(by(df$duration , df$speakers , mean))[3],

2),

19 sep = "")))

20 rug(jitter(df$duration),

21 side =4)

22 grid()

23 box()

Below is what the code produces.

9

Martin Schweinberger Plotting with R

4 Word clouds

In this post I want to exemplify how to create word clouds in R.
Word clouds visualize word frequencies of either single corpora or they

visualize different corpora. Although word clouds are not really used in aca-
demic linguistics, they are a neat way to display the themes - which may be
thought of as the semantic content - of corpora. To exemplify how to use word
clouds, we are going to have a look at the election programs (Wahlkampf-
programme) of German political parties for the Bundestag elections 2013.

1 ### --- Prepare data

2 # Remove all lists from the current workspace

3 rm(list=ls(all=T))

4

5 # Install packages we need or which may be useful

6 # (to activate just delete the #)

7 #install.packages ("tm")

8 #install.packages (" wordcloud ")

9 #install.packages ("Rstem ")

10 #install.packages (" stringr ")

10

Martin Schweinberger Plotting with R

11 #install.packages (" SnowballC ")

12

13 # Initiate the packages

14 library(tm)

15 library(wordcloud)

16 library(Rstem)

17 library(stringr)

18 library(SnowballC)

19

20 # Read in data

21 corp <- Corpus(DirSource("C:\\ Corpora \\ original versions

\\ Wahlkampfprogramme Bundestagswahl 2013\\ corpus"),

readerControl = list(language = "german")) #specifies the

exact folder where my text file(s) is for analysis with tm

.

22 ##

###

23

24 corp <- Corpus(VectorSource(corp)) # Create a corpus from the

vectors

25 #corp <- tm_map(corp , stemDocument , language = "german ") #

stem words (inactive because I want intakt words)

26 corp <- tm_map(corp , removePunctuation) # remove punctuation

27 corp <- tm_map(corp , tolower) # convert all words to lower

case

28 corp <- tm_map(corp , removeNumbers) # remove all numerals

29 corp <- tm_map(corp , function(x)removeWords(x, stopwords("

german"))) # remove grammatical words such as "ein", "ist

", "war", etc.

30

31 # clean corpus content

32 corp <- sapply(corp , function(x) {

33 x <- gsub("ue", "\{"u}", x)

34 x <- gsub("a\{"u}n", "auen", x)

35 x <- gsub("e\{"u}n", "euen", x)

36 x <- gsub("e\{"u}", "eue", x)

37 x <- gsub("oe", "\{"o}", x)

38 x <- gsub("ae", "\{"a}", x) })

39

40 corp <- Corpus(VectorSource(corp)) # convert vectors back

into a corpus

41

42 # Create a term document matrix

43 term.matrix <- TermDocumentMatrix(corp) # crate a term

document matrix

44 term.matrix <- removeSparseTerms(term.matrix , 0.5) # remove

infrequent words

45 term.matrix <- as.matrix(term.matrix)

11

Martin Schweinberger Plotting with R

46 colnames(term.matrix) <- c("CDU/CSU", "FDP", "Gr\{"u}ne", "

Die Linke", "SPD") # add column labels to tdm

47 # clean row names

48

49 # normalize absolute frequencies: convert absolute

frequencies

50 # to relative freqeuncies (per 1,000 words)

51 #colSums(term.matrix)

52 term.matrix[, 1] <- as.vector(unlist(sapply(term.matrix[, 1],

function(x) round(x/colSums(term.matrix)[1]*1000 , 0))))

53 term.matrix[, 2] <- as.vector(unlist(sapply(term.matrix[, 2],

function(x) round(x/colSums(term.matrix)[2]*1000 , 0))))

54 term.matrix[, 3] <- as.vector(unlist(sapply(term.matrix[, 3],

function(x) round(x/colSums(term.matrix)[3]*1000 , 0))))

55 term.matrix[, 4] <- as.vector(unlist(sapply(term.matrix[, 4],

function(x) round(x/colSums(term.matrix)[4]*1000 , 0))))

56 term.matrix[, 5] <- as.vector(unlist(sapply(term.matrix[, 5],

function(x) round(x/colSums(term.matrix)[5]*1000 , 0))))

57 #colSums(term.matrix)

58

59 # Create word clouds

60 #wordcloud(corp , max.words = 100, colors = brewer.pal(6, "

Dark2 "), random.order = FALSE)

61 comparison.cloud(term.matrix , max.words = 100, random.order =

FALSE , colors = brewer.pal(8, "Dark2"))

62 #commonality.cloud(term.matrix , max.words = 100, random.order

= FALSE)

12

Martin Schweinberger Plotting with R

The plot above shows a comparative word cloud which highlights dis-
tinctive words in the election programs of German political parties for the
Bundestag election 2013.

At first I thought that word clouds are simply a fancy but not very helpful
way to inspect language data but I have to admit that word clouds really
surprised me as they do appear to possess potential to offer an idea of what
groups of people are talking about.

The comparative word cloud shows that the FDP stresses concepts like
”wettbewerb”, ”freiheit”, ”chancen”, ”liberal” thereby stressing their lib-
eral outlook (they didn’t make it and didn’t deserve it by the way - just
my opinion). Die Grünen support every nonsense as they are ”für” ev-
erything and relied more on emphasizing ”frauen”, ”zukunft”, and ”teil-
habe” which is in line with their feel-good philosophy. Die Linke rallied on
about what we has to be done (”müssen”), and used words like ”sozial”,
”beschäftigten”, and ”öffentlich” a lot showing their emphasis on economic
issues. The social democrats (SPD) addressed topics like ”kommunen”, ”ar-
beit”, ”gesellschaft”, ”bildung”, and ”gerechtigkeit” - so they essentially used
their typical buzz words (just sayin’). Finally, the CDU/CSU mentioned
”ländlich”, ”wohlstand”, ”unser*, ”and ”weiterhin” to suggest that they will
just continue with whatever nothing that hve been doing over the past years.

In conclusion, I honestly didn’t think that I would get meaningful results

13

Martin Schweinberger Plotting with R

but the comparative word cloud does a rather good job at that. So that was
it on word clouds in R.

References http://cran.r-project.org/web/packages/wordcloud/wordcloud.pdf

14

