
Part-Of-Speech Tagging with R

Martin Schweinberger

June 24, 2016

Introduction

This post1 exemplifies how to add Part–of-Speech annotation (POS–tags)
to corpus data with R. Part-of-Speech tagging, or POS–tagging, is a form
of annotating text during which Part-of-Speech tags are assigned to char-
acter strings (these represent mostly words, of course, but also encompass
punctuation marks and other elements). This means that POS–tagging is
one specific type of annotation, i.e. adding information to data (either by
directly adding information to the data itself or by storing information in
e.g. a list which is linked to the data). It is important to note that annota-
tion encompasses various types of information such as pauses, overlap, etc.
POS–tagging is just one of these many ways in which corpus data can be
“enriched”.

Parts-of-speech, or word categories, refer to the grammatical nature or
category of a lexical item, e.g. in the sentence “Jane likes the girl” each
lexical item can be classified according to whether it belongs to the group
of determiners, verbs, nouns, etc. When POS–tagged, the example sentence
could look like the example below.

(1) Jane\NNP likes\VBZ the\DT girl\NN

In the example above, NNP stands for proper noun (singular), VBZ stands
for 3rd person singular present tense verb, DT for determiner, and NN for noun
(singular or mass). The POS tags used by the openNLP package are the Penn
English Treebank POS tags – here is a list of these tags and what they stand
for:

1Update: Joseph Flanagan has found a solution to the memory overkill in the code.
The post was updated including his suggestion to place the annotators outside the loop
on 2015-06-08.

1

Martin Schweinberger R for Linguists

Part–of–Speech Tag Part–of–Speech category

CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non–3rd person singular present
VBZ Verb, 3rd person singular present
WDT Wh–determiner
WP Wh–pronoun
WP$ Possessive wh–pronoun
WRB Wh–adverb

Assigning these POS tags to words appears to be rather straight forward.
However, POS tagging is quite complex and there are various ways by which
a computer can be trained to assign POS tags. For example, one could use
orthographic or morphological information to devise rules such as. . .

(2) If a word end with {ment} assign the POS tag NN (for common noun)

(3) If a word does not occur at the beginning of a sentence but is capi-
talized, assign the POS tag NNP (for proper noun)

Using such rules has the disadvantage that POS tags can only be assigned
to a relatively small number of words as most words will be ambiguous – think
of the similarity of the English plural and the English past tense morpheme,
for instance, which are orthographically identical.

Another option would be to use a dictionary in which each word is as-
signed a certain POS tag and a program could assign the POS tag if the
word occurs in a given text. This procedure has the disadvantage that most
words belong to more than one word class and POS tagging would thus have
to rely on additional information.

The problem of words that belong to more than one word class can partly
be remedied by including contextual information such as. . .

2

Martin Schweinberger R for Linguists

(4) If the previous word is a determiner and the subsequent word is a
common noun, assign the POS tag JJ (for a common adjective)

This procedure works quite well but there are still better options.
The best way to POS tag a text is to create a manually annotated training

set which resembles the language variety at hand. Based on the frequency
of the association between a given word and the POS tags it is assigned in
the training data, it is possible to tag a word with the POS tag that is most
often assigned to the given word in the training data.

All of the above methods can and should be optimized by combining them
and additionally including POS–n–grams, i.e. determining a POS tag of an
unknown word based on which sequence of POS tags is most similar to the
sequence at hand and also most common in the training data.

This introduction is extremely superficial and only intends to scratch
some of the basic procedures that POS tagging relies on. The interested
reader is referred to introductions on machine learning and POS tagging
such as e.g. https://class.coursera.org/nlp/lecture/149.

Part-Of-Speech Tagging with R using the openNLP

package

In R we can POS–tag large amounts of text by various means. This section
explores POS tagging using the openNLP package. Using the openNLP
library for POS tagging works particularly well when the aim is to POS tag
newspaper texts as the openNLP library implements the Apache OpenNLP
Maxent Part of Speech tagger and it comes with pre-trained models. Ideally,
POS taggers should be trained on data resembling the data to be POS tagged.
However, I do not know how to traind the Apache openNLP POS tagger via
R and it would be great if someone would provide a tutorial on how to do
that.

Using pre-trained models has the advantage that we do not need to train
the POS tagger ourselves. However, it also means that one has to rely on
models trained on data that may not really resemble the data a at hand.
This implies that using it for texts that differ from newspaper texts, i.e.
the language the models have been trained on, does not work as well, as
the model applies the probabilities of newspaper language to the language
variety at hand.

POS tagging with the openNLP requires the NLP package and installing
the models on which the openNLP package works – you can find more infor-
mation on the openNLP package and how it works at this site:

3

Martin Schweinberger R for Linguists

http://cran.r-project.org/web/packages/openNLP/openNLP.pdf.
The openNLP package uses the Apache OpenNLP Maxent Part of Speech
tagger which is a trained POS tagger, that assigns POS tags based on the
probability of what the correct POS tag is – the POS tag with the highest
probability is selected.

Below is an example of how you can implement POS tagging in R. In a first
step, we start our script by providing a short introduction with title date and
short description and continue by removing objects from the existing work
space.

1 ## ##

2 ### --- Part -of-Speech tagging and syntactic parsing with R

3 ### --- Title: Part -of -Speech tagging with R

4 ### --- Author: Martin Schweinberger

5 ### --- This script aims at an automated approach

6 ### --- to POS tagging a sample corpus.

7 ## ##

8 # Remove all lists from the current workspace

9 rm(list=ls(all=T))

After setting up our script, we install all libraries that are either required or
useful for POS tagging corpus data. In case you have not already installed
these libraries, install them using the install.packages function and re-
move the # to activate the commands and install the packages. It is crucial
to install the openNLP models if you want to use this library for POS tag-
ging. The models are pre-trained POS taggers available for various languages
– we are only using a model for English in this example, though.

1 # Install packages we need or which may be useful

2 # (to activate just delete the #)

3 #install.packages (" openNLPmodels.en", repos = "http ://

datacube.wu.ac.at/", type = "source ")

4 #install.packages (" openNLP ")

5 #install.packages ("NLP")

6 ### additional packages

7 #install.packages ("tm")

8 #install.packages (" stringr ")

9 #install.packages (" gsubfn ")

10 #install.packages ("plyr")

11 # to install openNLPmodels , please download an install

12 # the packages/models directly from

13 # http :// datacube.wu.ac.at/.

14 # To install these packages/models , simply enter

15 #install.packages ("foo", repos = "http :// datacube.wu.ac.at/",

type = "source ")

16 # into your R console. E.g. enter:

4

Martin Schweinberger R for Linguists

17 #install.packages (" openNLPmodels.en", repos = "http ://

datacube.wu.ac.at/", type = "source ")

18 # to install the file "openNLPmodels.en_1 .5-1.tar.gz"

If the libraries are already installed, they need to be activated using the
library function.

1 # activate packages

2 library(NLP)

3 library(openNLP)

4 library(openNLPmodels.en)

5 library(tm)

6 library(stringr)

7 library(gsubfn)

8 library(plyr)

After installing and activating the libraries and models, we set the paths to
the data and prepare the data for POS tagging.

1 # specify path of corpus

2 pathname <- "C:\\03 - MyProjects \\ PosTagging \\ TestCorpus"

3 # choose files

4 corpus.files = list.files(path = pathname , pattern = NULL ,

5 all.files = T, full.names = T, recursive = T,

6 ignore.case = T, include.dirs = T)

7 # load and unlist corpus

8 corpus.tmp <- lapply(corpus.files , function(x) {

9 scan(x, what = "char", sep = "\t", quiet = T) })

10 # Paste all elements of the corpus together

11 corpus.tmp <- lapply(corpus.tmp , function(x){

12 x <- paste(x, collapse = " ") })

13 # Clean corpus

14 corpus.tmp <- lapply(corpus.tmp , function(x) {

15 x <- enc2utf8(x) })

16 corpus.tmp <- gsub(" {2,}", " ", corpus.tmp)

17 # remove spaces at beginning and end of strings

18 corpus.tmp <- str_trim(corpus.tmp , side = "both")

19 # convert corpus files into strings

20 Corpus <- lapply(corpus.tmp , function(x){

21 x <- as.String(x) })

Once the data is cleaned, we may start tagging by applying the POS tagger
to the data.

1 # apply annotators to Corpus

5

Martin Schweinberger R for Linguists

2 Corpus.tagged <- lapply(Corpus , function(x){

3 sent_token_annotator <- Maxent_Sent_Token_Annotator ()

4 word_token_annotator <- Maxent_Word_Token_Annotator ()

5 pos_tag_annotator <- Maxent_POS_Tag_Annotator ()

6 y1 <- annotate(x, list(sent_token_annotator ,

word_token_annotator))

7 y2 <- annotate(x, pos_tag_annotator , y1)

8 # y3 <- annotate(x, Maxent_POS_Tag_Annotator(probs = TRUE),

y1)

9 y2w <- subset(y2 , type == "word")

10 tags <- sapply(y2w$features , ’[[’, "POS")

11 r1 <- sprintf("%s/%s", x[y2w], tags)

12 r2 <- paste(r1 , collapse = " ")

13 return(r2) })

It is now possible to inspect the results by entering the name of the POS
tagged object.

1 # inspect results

2 Corpus.tagged

The output produced by R is displayed below.

>[[1]]

>[1] ”This/DT is/VBZ the/DT first/JJ sentence/NN in/IN the/DT first/JJ file/NN
of/IN the/DT test/NN corpus/NN ./. This/DT is/VBZ a/DT second/JJ sen-
tence/NN in/IN the/DT test/NN corpus/NN but/CC I/PRP am/VBP too/RB
lazy/JJ to/TO write/VB much/RB more/RBR so/RB this/DT has/VBZ
to/TO suffice/VB ./. well/RB ,/, one/CD more/JJR sentence/NN should/MD
do/VB ./.”

>[[2]]

>[1] ”This/DT is/VBZ a/DT second/JJ file/NN with/IN some/DT sample/NN
content/NN ./. It/PRP will/MD be/VB used/VBN to/TO test/VB a/DT
part-of-speech/NN tagger/NN in/IN R./NNP I/PRP dont/VBP really/RB
know/VB if/IN it/PRP works/VBZ but/CC I/PRP definitely/RB hope/VBP
so/RB ./.”

>[[3]]

>[1] ”Finally/RB ,/, this/DT is/VBZ the/DT last/JJ file/NN of/IN the/DT
test/NN corpus/NN and/CC I/PRP really/RB dont/VBP want/VB to/TO
write/VB a/DT lot/NN more/RBR ./. Since/IN I/PRP am/VBP quite/RB
lazy/JJ ,/, this/DT is/VBZ the/DT last/JJ sentence/NN in/IN my/PRP$
tiny/JJ test/NN corpus/NN ./.”

6

Martin Schweinberger R for Linguists

It is preferable to write a function to perform the POS tagging auto-
matically rather than running all the lines of code semi-manually. The code
below represents just that: a little function which POS tags corpus data.
The function takes the path to the directory in which the corpus is located
as an argument.

1 POStag <- function(path = path){

2 require("NLP")

3 require("openNLP")

4 require("openNLPmodels.en")

5 corpus.files = list.files(path = path , pattern = NULL ,

6 all.files = T,

7 full.names = T, recursive = T, ignore.case = T,

8 include.dirs = T)

9 corpus.tmp <- lapply(corpus.files , function(x) {

10 scan(x, what = "char", sep = "\t", quiet = T) })

11 corpus.tmp <- lapply(corpus.tmp , function(x){

12 x <- paste(x, collapse = " ") })

13 corpus.tmp <- lapply(corpus.tmp , function(x) {

14 x <- enc2utf8(x) })

15 corpus.tmp <- gsub(" {2,}", " ", corpus.tmp)

16 corpus.tmp <- str_trim(corpus.tmp , side = "both")

17 Corpus <- lapply(corpus.tmp , function(x){

18 x <- as.String(x) })

19 sent_token_annotator <- Maxent_Sent_Token_Annotator ()

20 word_token_annotator <- Maxent_Word_Token_Annotator ()

21 pos_tag_annotator <- Maxent_POS_Tag_Annotator ()

22 lapply(Corpus , function(x){

23 y1 <- annotate(x, list(sent_token_annotator ,

24 word_token_annotator))

25 y2 <- annotate(x, pos_tag_annotator , y1)

26 # y3 <- annotate(x, Maxent_POS_Tag_Annotator(probs = TRUE),

y1)

27 y2w <- subset(y2 , type == "word")

28 tags <- sapply(y2w$features , ’[[’, "POS")

29 r1 <- sprintf("%s/%s", x[y2w], tags)

30 r2 <- paste(r1 , collapse = " ")

31 return(r2) })

32 }

The function will be tested by applying it to a small test corpus.

1 # test the function

2 POStag(path = "C:\\03- MyProjects \\ PosTagging \\ TestCorpus")

The output of the function is displayed below.

7

Martin Schweinberger R for Linguists

>[[1]]

>[1] ”This/DT is/VBZ the/DT first/JJ sentence/NN in/IN the/DT first/JJ file/NN
of/IN the/DT test/NN corpus/NN ./. This/DT is/VBZ a/DT second/JJ sen-
tence/NN in/IN the/DT test/NN corpus/NN but/CC I/PRP am/VBP too/RB
lazy/JJ to/TO write/VB much/RB more/RBR so/RB this/DT has/VBZ
to/TO suffice/VB ./. well/RB ,/, one/CD more/JJR sentence/NN should/MD
do/VB ./.”

>[[2]]

>[1] ”This/DT is/VBZ a/DT second/JJ file/NN with/IN some/DT sample/NN
content/NN ./. It/PRP will/MD be/VB used/VBN to/TO test/VB a/DT
part-of-speech/NN tagger/NN in/IN R./NNP I/PRP dont/VBP really/RB
know/VB if/IN it/PRP works/VBZ but/CC I/PRP definitely/RB hope/VBP
so/RB ./.”

>[[3]]

>[1] ”Finally/RB ,/, this/DT is/VBZ the/DT last/JJ file/NN of/IN the/DT
test/NN corpus/NN and/CC I/PRP really/RB dont/VBP want/VB to/TO
write/VB a/DT lot/NN more/RBR ./. Since/IN I/PRP am/VBP quite/RB
lazy/JJ ,/, this/DT is/VBZ the/DT last/JJ sentence/NN in/IN my/PRP$
tiny/JJ test/NN corpus/NN ./.”

Warnmeldungen:
1: In scan(file, what, nmax, sep, dec, quote, skip, nlines, na.strings, :
EOF in Zeichenkette
2: In scan(file, what, nmax, sep, dec, quote, skip, nlines, na.strings,
EOF in Zeichenkette

The output shows that the function fulfills its purpose and automatically
POS tags the corpus data in the specified directory. The warnings that are
printed by R can be ignored because they merely inform that the last line is
not empty but contains content. I hope this helps and I will also be posting
some updates to include more useful examples.

Part-Of-Speech Tagging with R using the Tree

Tagger

Another much handier way to add POS tags to texts is to use the koRpus li-
brary rather than the openNLP library. The koRpus library uses the TreeTag-
ger (cf. http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/)
for POS tagging. In other words, the TreeTagger has to be installed prior to
running the script below as it accesses the TreeTagger via R.

You can find the code for implementing the TreeTagger below. However,
a word of warning is advisable: It can be quite tedious to implement the

8

Martin Schweinberger R for Linguists

TreeTagger in case you are running a Windows machine (as I do). Most of
the issues were solved when I re-installed Java though. Last but not least, I
simply implement the TreeTagger without training it! This is in fact not a
good practice and should be avoided as I have no way of knowing how good
the performance is or what I could do to improve its performance!

1 # POS tagging in R with koRpus

2 # activate library

3 library(koRpus)

4 # define pathname

5 pathname = "C:\\03 - MyProjects \\ PosTagging \\ TestCorpus"

6 # perform POS tagging

7 text.tagged <- treetag("C:\\03- MyProjects \\ PosTagging \\

TestCorpus/text1.txt", treetagger="manual", lang="en",

8 TT.options=list(path="C:\\ TreeTagger", preset="en"))

The results can be inspected by calling the object in which the results are
stored.

1 # inspect text.tagged

2 text.tagged@TT.res

9

Martin Schweinberger R for Linguists

Slot ”TT.res”:

token tag lemma lttr wclass desc stop stem

1 This DT this 4 determiner Determiner NA NA
2 is VBZ be 2 verb Verb, 3rd person singular present of ”to be” NA NA
3 the DT the 3 determiner Determiner NA NA
4 first JJ first 5 adjective Adjective NA NA
5 sentence NN sentence 8 noun Noun, singular or mass NA NA
6 in IN in 2 preposition Preposition or subordinating conjunction NA NA
7 the DT the 3 determiner Determiner NA NA
8 first JJ first 5 adjective Adjective NA NA
9 file NN file 4 noun Noun, singular or mass NA NA
10 of IN of 2 preposition Preposition or subordinating conjunction NA NA
11 the DT the 3 determiner Determiner NA NA
12 test NN test 4 noun Noun, singular or mass NA NA
13 corpus NN corpus 6 noun Noun, singular or mass NA NA
14 . SENT . 1 fullstop Sentence ending punctuation NA NA
15 This DT this 4 determiner Determiner NA NA
16 is VBZ be 2 verb Verb, 3rd person singular present of ”to be” NA NA
17 a DT a 1 determiner Determiner NA NA
18 second JJ second 6 adjective Adjective NA NA
19 sentence NN sentence 8 noun Noun, singular or mass NA NA
20 in IN in 2 preposition Preposition or subordinating conjunction NA NA
21 the DT the 3 determiner Determiner NA NA
22 test NN test 4 noun Noun, singular or mass NA NA
23 corpus NN corpus 6 noun Noun, singular or mass NA NA
24 but CC but 3 conjunction Coordinating conjunction NA NA
25 I PP I 1 pronoun Personal pronoun NA NA
26 am VBP be 2 verb Verb, non-3rd person singular present of ”to be” NA NA
27 too RB too 3 adverb Adverb NA NA
28 lazy JJ lazy 4 adjective Adjective NA NA
29 to TO to 2 to to NA NA
30 write VV write 5 verb Verb, base form NA NA
31 much RB much 4 adverb Adverb NA NA
32 more RBR more 4 adverb Adverb, comparative NA NA
33 so RB so 2 adverb Adverb NA NA
34 this DT this 4 determiner Determiner NA NA
35 has VHZ have 3 verb Verb, 3rd person singular present of ”to have” NA NA
36 to TO to 2 to to NA NA
37 suffice VV suffice 7 verb Verb, base form NA NA
38 . SENT . 1 fullstop Sentence ending punctuation NA NA
39 well RB well 4 adverb Adverb NA NA
40 , , , 1 comma Comma NA NA
41 one CD one 3 number Cardinal number NA NA
42 more JJR more 4 adjective Adjective, comparative NA NA
43 sentence NN sentence 8 noun Noun, singular or mass NA NA
44 should MD should 6 modal Modal NA NA
45 do VV do 2 verb Verb, base form NA NA
46 . SENT . 1 fullstop Sentence ending punctuation NA NA

I hoped this short tutorial might help you POS tag your own data with
R.

10

